Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $f(x)=\left\{\begin{array}{ll}x\left(1+\frac{1}{2} \sin \left(\log x^2\right)\right), & x \neq 0 \\ 0, & x=0\end{array}\right.$, then
$\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x}$
MathematicsLimitsAP EAMCETAP EAMCET 2023 (16 May Shift 1)
Options:
  • A is equal to $f(0)$
  • B does not exist
  • C is equal to $\frac{1}{2}$
  • D is equal to $\mathrm{f}(1)$
Solution:
1284 Upvotes Verified Answer
The correct answer is: does not exist
$\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x}=\lim _{x \rightarrow 0} \frac{x\left(1+\frac{1}{2} \sin \left(\log x^2\right)\right)-0}{x}$
$=\lim _{x \rightarrow 0} 1+\frac{1}{2} \sin \left(\log x^2\right)=1+\frac{1}{2} \sin \left(\lim _{x \rightarrow 0} \log x^2\right)$
$\because \quad \lim _{x \rightarrow 0} \log x^2 \rightarrow-\infty \Rightarrow \sin \left(\lim _{x \rightarrow 0} \log x^2\right)$
is an oscillatory value between 1 and -1 .
$\therefore \quad \lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x}$ does not exist.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.