Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If f(x)=(x-1)(x-2)(x-3) for x[0,4], then the value of c(0,4) satisfying Lagrange's mean value theorem is
MathematicsApplication of DerivativesAP EAMCETAP EAMCET 2018 (25 Apr Shift 1)
Options:
  • A 3±23
  • B 2±233
  • C 2±32
  • D 3±33
Solution:
2887 Upvotes Verified Answer
The correct answer is: 2±233

Given:

f(x)=(x-1)(x-2)(x-3)

fx=x3-6x2+11x-6

f'x=3x2-12x+11

Now, fx is continuous in R as it is a odd degree polynomial.

From Lagrange's mean value theorem, if fx is continuous in a,b and differentiable in a,b then there exist  ca,b such that 

f'c=fb-fab-a

3c2-12c+11=f4-f04-0

3c2-12c+11=6--64-0

3c2-12c+11=3

3c2-12c+8=0

c=12±144-12×86

c=12±486

c=2±2320,4.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.