Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $f(x)=\frac{1}{x^2} \int_3^x\left(2 t-3 f^{\prime}(t)\right) d t$, then $f^{\prime}(3)$ is equal to
MathematicsDefinite IntegrationTS EAMCETTS EAMCET 2004
Options:
  • A $\frac{-1}{2}$
  • B $\frac{-1}{3}$
  • C $\frac{1}{2}$
  • D $\frac{1}{3}$
Solution:
1807 Upvotes Verified Answer
The correct answer is: $\frac{1}{2}$
Given that,
$$
f(x)=\frac{1}{x^2} \int_3^x\left(2 t-3 f^{\prime}(t)\right) d t
$$
On differentiating both sides w.r.t. $x$, we get
$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{x^2} \frac{d}{d x}\left(\int_3^x\left(2 t-3 f^{\prime}(t) d t\right)\right. \\
& \quad+\int_3^x\left(2 t-3 f^{\prime}(t)\right) d t \frac{d}{d x}\left(\frac{1}{x^2}\right)
\end{aligned}
$$
$$
\begin{aligned}
& \Rightarrow \quad f^{\prime}(x)=\frac{1}{x^2}\left(2 x-3 f^{\prime}(x)\right) \\
&-\frac{2}{x^3} \int_3^x\left(2 t-3 f^{\prime}(t)\right) d t
\end{aligned}
$$
At $x=3$,
$$
\begin{aligned}
f^{\prime}(3) & =\frac{1}{3^2}\left(6-3 f^{\prime}(3)\right)-0 \\
\Rightarrow \quad \frac{4 f^{\prime}(3)}{3} & =\frac{2}{3} \Rightarrow f^{\prime}(3)=\frac{1}{2}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.