Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $f(x)=\int \frac{d x}{\left(x^2+2\right)}$ and $f(\sqrt{2})=0$, then $f(0)=$
MathematicsIndefinite IntegrationAP EAMCETAP EAMCET 2023 (15 May Shift 1)
Options:
  • A $\frac{\pi}{2 \sqrt{2}}$
  • B $\frac{-\pi}{2 \sqrt{2}}$
  • C $\frac{-\pi}{4 \sqrt{2}}$
  • D $\frac{\pi}{4 \sqrt{2}}$
Solution:
1014 Upvotes Verified Answer
The correct answer is: $\frac{-\pi}{4 \sqrt{2}}$
$\quad f(x)=\int \frac{d x}{x^2+(\sqrt{2})^2}=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{x}{\sqrt{2}}\right)+c$ Since at $x=\sqrt{2}, f(x)=0$
$$
\Rightarrow 0=\frac{1}{\sqrt{2}} \tan ^{-1}(1)+c \Rightarrow c=-\frac{\pi}{4 \sqrt{2}}
$$
Hence
$$
f(0)=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{0}{\sqrt{2}}\right)+\left(-\frac{\pi}{4 \sqrt{2}}\right)=-\frac{\pi}{4 \sqrt{2}}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.