Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If fx=x2cos2x2xtan2x-2x-6tanxdx and f0=π then fx=
MathematicsIndefinite IntegrationAP EAMCETAP EAMCET 2022 (04 Jul Shift 2)
Options:
  • A x2sinx+π
  • B cosx+π-1
  • C -x3sin2x+π
  • D x3cos2x+πcosx
Solution:
2714 Upvotes Verified Answer
The correct answer is: -x3sin2x+π

fx=x2cos2x2xtan2x-2x-6tanxdx

=2x3sin2x-2x3cos2x-6x2sinxcosxdx

=2x3-cos2xdx-3x2sin2xdx

Let I=-2x3cos2xdx

=-2x3sin2x2+23x2sin2x2dx=-x3sin2x+3x2sin2xdx

Hence, fx=-x3sin2x+C

Given, f0=π

i.e. C=π

fx=-x3sin2x+π

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.