Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $f(x)=\frac{2 x-3}{(x-2)(x-3)}$ is a real valued function then the value that $f(x)$ does not take is
MathematicsFunctionsTS EAMCETTS EAMCET 2022 (19 Jul Shift 2)
Options:
  • A -10
  • B 2
  • C 1
  • D -2
Solution:
1333 Upvotes Verified Answer
The correct answer is: -2
$f(x)=\frac{2 x-3}{(x-2)(x-3)}$
Let $y=\frac{2 x-3}{x^2-5 x+6}$
$$
\begin{aligned}
& \Rightarrow \mathrm{y}\left(\mathrm{x}^2-5 \mathrm{x}+6\right)-(2 \mathrm{x}-3)=0 \\
& \Rightarrow \mathrm{yx}^2-(5 \mathrm{y}+2) \mathrm{x}+(6 \mathrm{y}+3)=0
\end{aligned}
$$
for real $\mathrm{x}, \mathrm{D} \geq 0$
$$
\Rightarrow(5 \mathrm{y}+2)^2-4 \mathrm{y}(6 \mathrm{y}+3) \geq 0
$$
On solving we get $\mathrm{y} \in(-\infty,-2-2 \sqrt{3}] \cup[-2+2 \sqrt{3}, \infty)$
$$
\Rightarrow \mathrm{x} \neq-2
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.