Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $f(x)=x^3+a x^2+b x+5 \sin ^2 x$ is an increasing function on $R$, then
MathematicsApplication of DerivativesAP EAMCETAP EAMCET 2018 (22 Apr Shift 1)
Options:
  • A $a^2-3 b-15 < 0$
  • B $a^2-3 b+15 < 0$
  • C $a^2-3 b-15>0$
  • D $a^2+3 b+15>0$
Solution:
2844 Upvotes Verified Answer
The correct answer is: $a^2-3 b+15 < 0$
$\begin{array}{ll} & \because f^{\prime}(x)>0 \\ \Rightarrow & 3 x^2+2 a x+b+10 \sin x \cos x>0 \\ \Rightarrow & 3 x^2+2 a x+b+5 \sin 2 x>0 \\ \Rightarrow & 3 x^2+2 a x+b-5>0 \\ \Rightarrow \quad & 3 x^2+2 a x+(b-5)>0 \\ \text { Here, } & a>0, a < 0 \\ \therefore & (2 a)^2-4 \times 3 \times(b-5) < 0 \\ & 4 a^2-12(b-5) < 0 \\ & a^2-3(b-5) < 0 \\ & a^2-3 b+15 < 0 .\end{array}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.