Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $f(x)=x-[x], x \in R$, then $f^{\prime}\left(\frac{1}{2}\right)$ is equal to
MathematicsLimits
Options:
  • A
    $\frac{3}{2}$
  • B
    1
  • C
    0
  • D
    $-1$
Solution:
2346 Upvotes Verified Answer
The correct answer is:
1
Since, $f(x)=x-[x]$
$$
L f^{\prime}\left(\frac{1}{2}\right)=\lim _{h \rightarrow 0} \frac{f\left(\frac{1}{2}-h\right)-f\left(\frac{1}{2}\right)}{-h}
$$
$=\lim _{h \rightarrow 0} \frac{\left(\frac{1}{2}-h\right)-\left[\frac{1}{2}-h\right]-\frac{1}{2}+\left[\frac{1}{2}\right]}{-h}$
$$
=\lim _{h \rightarrow 0} \frac{\frac{1}{2}-h-0-\frac{1}{2}+0}{-h}=1
$$
and $R f^{\prime}\left(\frac{1}{2}\right)=\lim _{h \rightarrow 0} \frac{f\left(\frac{1}{2}+h\right)-f\left(\frac{1}{2}\right)}{h}$
$$
=\lim _{h \rightarrow 0} \frac{\left(\frac{1}{2}+h\right)-\left[\frac{1}{2}+h\right]-\frac{1}{2}+\left[\frac{1}{2}\right]}{h}
$$


$$
=\lim _{h \rightarrow 0} \frac{\frac{1}{2}+h-0-\frac{1}{2}+0}{h}=1
$$
As, $L f^{\prime}\left(\frac{1}{2}\right)=R f^{\prime}\left(\frac{1}{2}\right)$. Hence, $f^{\prime}\left(\frac{1}{2}\right)=1$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.