Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $f(y)=1-(y-1)+(y-1)^2-(y-1)^3$ $+\ldots-(y-1)^{17}$ then the coefficient of $y^2$ in it is
MathematicsBinomial TheoremJEE MainJEE Main 2012 (07 May Online)
Options:
  • A
    ${ }^{17} \mathrm{C}_2$
  • B
    ${ }^{17} \mathrm{C}_3$
  • C
    ${ }^{18} \mathrm{C}_2$
  • D
    ${ }^{18} \mathrm{C}_3$
Solution:
1382 Upvotes Verified Answer
The correct answer is:
${ }^{18} \mathrm{C}_3$
Given function is
$$
\begin{array}{r}
f(y)=1-(y-1)+(y-1)^2-(y-1)^3 \\
+\ldots \ldots \ldots-(y-1)^{17}
\end{array}
$$
In the expansion of $(y-1)^n$
$$
T_{r+1}={ }^n \mathrm{C}_r y^{n-r}(-1)^r
$$
coeff of $y^2$ in $(y-1)^2={ }^2 \mathrm{C}_0$
coeff of $y^2$ in $(y-1)^3={ }^3 \mathrm{C}_1$
coeff of $y^2$ in $(y-1)^4={ }^4 \mathrm{C}_2$
So, coeff of termwise is
$$
\begin{aligned}
& { }^2 \mathrm{C}_0+{ }^3 \mathrm{C}_1+{ }^4 \mathrm{C}_2+{ }^5 \mathrm{C}_3+\ldots \ldots \ldots+{ }^{17} \mathrm{C}_{15} \\
& =1+{ }^3 \mathrm{C}_1+{ }^4 \mathrm{C}_2+{ }^5 \mathrm{C}_3+\ldots \ldots \ldots . .+{ }^{17} \mathrm{C}_{15} \\
& =\left({ }^3 \mathrm{C}_0+{ }^3 \mathrm{C}_1\right)+{ }^4 \mathrm{C}_2+{ }^5 \mathrm{C}_3+\ldots \ldots \ldots . .+{ }^{17} \mathrm{C}_{15} \\
& ={ }^4 \mathrm{C}_1+{ }^4 \mathrm{C}_2+{ }^5 \mathrm{C}_3+\ldots \ldots \ldots+{ }^{17} \mathrm{C}_{15}
\end{aligned}
$$

$$
\begin{aligned}
& ={ }^5 \mathrm{C}_2+{ }^5 \mathrm{C}_3+\ldots \ldots \ldots+{ }^{17} \mathrm{C}_{15} \\
& ={ }^{18} \mathrm{C}_{15}={ }^{18} \mathrm{C}_3
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.