Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If for $\mathbf{a}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+\hat{\mathbf{k}}, \mathbf{b}=\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\mathbf{c}=-3 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$, then find [a b c $]$.
MathematicsVector AlgebraCOMEDKCOMEDK 2021
Options:
  • A $-15$
  • B $-10$
  • C $-30$
  • D $-5$
Solution:
2117 Upvotes Verified Answer
The correct answer is: $-30$
Giveñ, åa $=2 \hat{\mathbf{i}}+3 \hat{\mathfrak{j}}+\hat{\mathbf{k}}, \hat{b}=\hat{\mathfrak{i}}-2 \hat{}$
and $\mathfrak{c}=-3 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$
$\therefore \quad[a \boldsymbol{b} c]=\left|\begin{array}{ccc}2 & 3 & 1 \\ 1 & -2 & 1 \\ -3 & 1 & 2\end{array}\right|$
$=2(-4-1)-3(2+3)+1(1-6)$
$=-10-15-5=-30$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.