Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If for any real $x, \frac{11 x^2+12 x+6}{x^2+4 x+2}=y$ is such that $y < a$ or $y \geq b$, then $a, b$ are
MathematicsQuadratic EquationTS EAMCETTS EAMCET 2018 (04 May Shift 2)
Options:
  • A 3,5
  • B $-5,3$
  • C $-4,5$
  • D $-6,4$
Solution:
1451 Upvotes Verified Answer
The correct answer is: $-5,3$
We have,
$$
\begin{aligned}
& y=\frac{11 x^2+12 x+6}{x^2+4 x+2} \\
& \Rightarrow \quad y x^2+4 x y+2 y=11 x^2+12 x+6 \\
& \Rightarrow \quad(y-11) x^2+4 x(y-3)+2(y-3)=0 \\
& \Rightarrow \quad x=\frac{-4(y-3) \pm \sqrt{16(y-3)^2-8}}{2(y-11)} \\
&
\end{aligned}
$$
Since, $x \in$ real number
$$
\begin{array}{lr}
\therefore & D \geq 0 \\
\Rightarrow & 16(y-3)^2-8(y-11)(y-3) \geq 0 \\
\Rightarrow & 8(y-3)[2(y-3)-(y-11)] \geq 0 \\
\Rightarrow & 8(y-3)(2 y-6-y+11) \geq 0 \\
\Rightarrow & 8(y-3)(y+5) \geq 0
\end{array}
$$


$$
\begin{aligned}
& \therefore y \leq-5 \text { or } y \geq 3 \\
& \therefore a=-5 \text { and } b=3 .
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.