Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If, for positive real numbers $\mathrm{x}, \mathrm{y}, \mathrm{z}$, the numbers $\mathrm{x}+\mathrm{y}, 2 \mathrm{y}$ and $\mathrm{y}+\mathrm{z}$ are in harmonic progression, then which one of the following is correct?
MathematicsSequences and SeriesNDANDA 2007 (Phase 2)
Options:
  • A $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in geometric progression
  • B $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in arithmetic progression
  • C $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in harmonic progression
  • D None of the above
Solution:
2537 Upvotes Verified Answer
The correct answer is: $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in geometric progression
As given:
$\mathrm{x}+\mathrm{y}, 2 \mathrm{y}$ and $\mathrm{y}+\mathrm{z}$ are in harmonic progression. $2 y=\frac{(x+y)(y+z)}{x+y+y+z}$
$\Rightarrow \quad \frac{1}{2 y}=\frac{1}{x+y}+\frac{1}{y+z}$
$\Rightarrow \quad y(x+2 y+z)=\left(x y+x z+y^{2}+y z\right)$
$\Rightarrow x y+2 y^{2}+y z=x y+x z+y^{2}+y z$
$\Rightarrow \quad y^{2}=x z$
$\Rightarrow \mathrm{x}, \mathrm{y}, \mathrm{z}$ are in geometric progession.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.