Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If \( \frac{{ }^{\mathrm{n}} \mathrm{C}_{0}}{2}-\frac{{ }^{\mathrm{n}} \mathrm{C}_{1}}{3}+\frac{{ }^{\mathrm{n}} \mathrm{C}_{2}}{4}+\ldots . .+(-1)^{\mathrm{n}} \frac{{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}}{\mathrm{n}+2}=\frac{1}{2001 \times 2000} \), then \( \frac{(n+1)}{1000} \) is..
MathematicsBinomial TheoremJEE Main
Solution:
2132 Upvotes Verified Answer
The correct answer is: 2
(1 - x)n=C0n-C1nx+C2nx2-......(-1)n Cnnxn
multiplying both sides by x
x1-xn=C0nx-C1nx2+C2nx3-.......-1n Cnnxn+1
Integrating both sides
0 1 x 1 - x n = 0 1 n C 0 x - n C 1 x 2 + n C 2 x 3 + ..... + n C n x n + 1
1 n + 1 n + 2 = n C 0 2 - n C 1 3 + n C 2 4 .....
⇒    1 n + 1 n + 2 = 1 2 0 0 0 × 2 0 0 1  i.e.  n = 1 9 9 9

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.