Search any question & find its solution
Question:
Answered & Verified by Expert
If frequency of a photon is $6 \times 10^{14} \mathrm{~Hz}$, then find its wavelength.
[Take, speed of light, $\mathrm{c}=3 \times 10^8 \mathrm{~m} / \mathrm{s}$ ]
Options:
[Take, speed of light, $\mathrm{c}=3 \times 10^8 \mathrm{~m} / \mathrm{s}$ ]
Solution:
1360 Upvotes
Verified Answer
The correct answer is:
$500 nm$
Given, Frequency of photon $(v)=6 \times 10^{14} \mathrm{~Hz}$
Speed of light $(\mathrm{c})=3 \times 10^8 \mathrm{~m} / \mathrm{s}$
$\therefore$ Wavelength of photon $\lambda=\frac{\mathrm{c}}{\mathrm{v}}$
$=\frac{3 \times 10^8}{6 \times 10^{14}}=0.5 \times 10^{-6}=500 \times 10^{-9}=500 \mathrm{~nm}$
Speed of light $(\mathrm{c})=3 \times 10^8 \mathrm{~m} / \mathrm{s}$
$\therefore$ Wavelength of photon $\lambda=\frac{\mathrm{c}}{\mathrm{v}}$
$=\frac{3 \times 10^8}{6 \times 10^{14}}=0.5 \times 10^{-6}=500 \times 10^{-9}=500 \mathrm{~nm}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.