Search any question & find its solution
Question:
Answered & Verified by Expert
If \(f(x)=x^4-x^3+7 x^2+14\), then what is the value of \(f^{\prime \prime}(5)\) ?
Options:
Solution:
1906 Upvotes
Verified Answer
The correct answer is:
284
Given, \(f(x)=x^4-x^3+7 x^2+14\)
\(\begin{aligned}
& \Rightarrow f^{\prime}(x)=4 x^3-3 x^2+14 x \\
& \Rightarrow f^{\prime \prime}(x)=12 x^2-6 x+14 \\
& \therefore f^{\prime \prime}(5)=300-30+14=284
\end{aligned}\)
Hence, option (c) is correct.
\(\begin{aligned}
& \Rightarrow f^{\prime}(x)=4 x^3-3 x^2+14 x \\
& \Rightarrow f^{\prime \prime}(x)=12 x^2-6 x+14 \\
& \therefore f^{\prime \prime}(5)=300-30+14=284
\end{aligned}\)
Hence, option (c) is correct.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.