Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If \(f(z)=\frac{7-z}{1-z^2}\), where \(z=1+2 i\), then \(|f(z)|\) is equal to :
MathematicsComplex NumberVITEEEVITEEE 2023
Options:
  • A \(\frac{|z|}{2}\)
  • B \(|z|\)
  • C \(2|z|\)
  • D None
Solution:
2205 Upvotes Verified Answer
The correct answer is: \(\frac{|z|}{2}\)
\(\begin{aligned} & \mathrm{z}=1+2 \mathrm{i} \Rightarrow|\mathrm{z}|=\sqrt{1+4}=\sqrt{5} \\ & \therefore \mathrm{f}(\mathrm{z})=\frac{7-\mathrm{z}}{1-\mathrm{z}^2}=\frac{7-1-2 \mathrm{i}}{1-(1+2 \mathrm{i})^2} \\ & =\frac{6-2 \mathrm{i}}{1-(1-4+4 \mathrm{i})}=\frac{6-2 \mathrm{i}}{4-4 \mathrm{i}}=\frac{3-\mathrm{i}}{2-2 \mathrm{i}} \\ & \Rightarrow|\mathrm{f}(\mathrm{z})|=\left|\frac{3-\mathrm{i}}{2-2 \mathrm{i}}\right|=\frac{|3-\mathrm{i}|}{|2-2 \mathrm{i}|} \\ & =\frac{\sqrt{9+1}}{\sqrt{4+4}}=\frac{\sqrt{5}}{2}=\frac{|\mathrm{z}|}{2}\end{aligned}\)

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.