Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathrm{G}(2,-1,2)$ is the centroid of tetrahedron $\mathrm{OABC}$ where $\mathrm{O}=(0,0,0)$ and $\mathrm{G}_1$ is the centroid of $\triangle \mathrm{ABC}$, then $\left|\overline{O G_1}\right|=$
MathematicsStraight LinesAP EAMCETAP EAMCET 2022 (08 Jul Shift 1)
Options:
  • A $1$
  • B $\frac{3}{2}$
  • C $4$
  • D $\frac{9}{2}$
Solution:
2680 Upvotes Verified Answer
The correct answer is: $4$


$\begin{aligned} & \text { Now } \frac{a}{4}=2 \Rightarrow a=8 \\ & \frac{b}{4}=-1 \Rightarrow b=-4 \\ & \frac{c}{4}=2 \Rightarrow c=8\end{aligned}$
$\begin{aligned} & \therefore \mathrm{G},\left(\frac{8}{3}, \frac{-4}{3}, \frac{8}{3}\right) \\ & \therefore \Rightarrow \mathrm{b}=\frac{\mathrm{a}+\mathrm{c}}{2}\end{aligned}$
$\cot \left(\frac{\mathrm{A}}{2}\right) \times \cot \left(\frac{\mathrm{c}}{2}\right)=\left[\frac{\cos \left(\frac{\mathrm{A}}{2}\right)}{\sin \left(\frac{\mathrm{A}}{2}\right)}\right] \cdot\left[\frac{\cos \left(\frac{\mathrm{c}}{2}\right)}{\sin \left(\frac{\mathrm{c}}{2}\right)}\right]$
$\cot \left(\frac{\mathrm{A}}{2}\right) \times \cot \left(\frac{\mathrm{c}}{2}\right)=\left[\frac{2 \cos \left(\frac{\mathrm{A}}{2}\right) \times \sin \left(\frac{\mathrm{A}}{2}\right)}{2 \sin ^2\left(\frac{\mathrm{A}}{2}\right)}\right]$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.