Search any question & find its solution
Question:
Answered & Verified by Expert
If $\mathrm{G}(4,3,3)$ is the centroid of the triangle $\mathrm{ABC}$ whose vertices are $\mathrm{A}(\mathrm{a}, 3,1), \mathrm{B}(4,5, \mathrm{~b})$ and $\mathrm{C}(6, \mathrm{c}, 5)$, then the value of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are
Options:
Solution:
1712 Upvotes
Verified Answer
The correct answer is:
$\mathrm{a}=2, \mathrm{~b}=3, \mathrm{c}=1$
We have vertices $\mathrm{A}(\mathrm{a}, 3,1) ; \mathrm{B}(4,5, \mathrm{~b}) ; \mathrm{C}(6, \mathrm{c}, 5)$ and $\mathrm{G}(4,3,3)$ of $\triangle \mathrm{ABC}$
$$
\frac{\mathrm{a}+4+6}{3}=4, \frac{3+5+\mathrm{c}}{3}=3, \frac{1+\mathrm{b}+5}{3}=3 \Rightarrow \mathrm{a}=2, \mathrm{c}=1, \mathrm{~b}=3
$$
$$
\frac{\mathrm{a}+4+6}{3}=4, \frac{3+5+\mathrm{c}}{3}=3, \frac{1+\mathrm{b}+5}{3}=3 \Rightarrow \mathrm{a}=2, \mathrm{c}=1, \mathrm{~b}=3
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.