Search any question & find its solution
Question:
Answered & Verified by Expert
If $g$ is the inverse of $f$ and $f^{\prime}(x)=\frac{1}{1+x^3}$, then $g^{\prime}(x)$ is
Options:
Solution:
1452 Upvotes
Verified Answer
The correct answer is:
$1+(g(x))^3$
$\begin{array}{ll} & \mathrm{g}(x) \text { is inverse of function } \mathrm{f}(x) \\ & \text { i.e., } \mathrm{g}(x)=\mathrm{f}^{-1}(x) \\ & \mathrm{f}(\mathrm{g}(x))=x \\ & \text { differentiating w.r.t. } x \text {, we get } \\ & \mathrm{f}^{\prime}(\mathrm{g}(x)) \times \mathrm{g}^{\prime}(x)=1 \\ \therefore \quad & \mathrm{g}^{\prime}(x)=\frac{1}{\mathrm{f}^{\prime}(\mathrm{g}(x))}... (i)\end{array}$
Now, $\mathrm{f}^{\prime}(x)=\frac{1}{1+x^3}$... [Given]
$\therefore \quad \mathrm{f}^{\prime}(\mathrm{g}(x))=\frac{1}{1+(\mathrm{g}(x))^3}$ ... (ii)
$\therefore \quad$ From (i) and (ii), we get
$\begin{aligned}
& \therefore \quad \mathrm{g}^{\prime}(x)=1+(\mathrm{g}(x))^3 \\
&
\end{aligned}$
Now, $\mathrm{f}^{\prime}(x)=\frac{1}{1+x^3}$... [Given]
$\therefore \quad \mathrm{f}^{\prime}(\mathrm{g}(x))=\frac{1}{1+(\mathrm{g}(x))^3}$ ... (ii)
$\therefore \quad$ From (i) and (ii), we get
$\begin{aligned}
& \therefore \quad \mathrm{g}^{\prime}(x)=1+(\mathrm{g}(x))^3 \\
&
\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.