Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $g(x)=\int_0^x \cos ^4 t \mathrm{~d} t$, then $g(x+\pi)$ equals
MathematicsDefinite IntegrationMHT CETMHT CET 2022 (08 Aug Shift 2)
Options:
  • A $g(x)+g(\pi)$
  • B $g(x)-g(\pi)$
  • C $\frac{g(x)}{g(\pi)}$
  • D $g(x) \cdot g(\pi)$
Solution:
1676 Upvotes Verified Answer
The correct answer is: $g(x)+g(\pi)$
$\begin{aligned}
& g(x)=\int_0^x \cos ^4 t \mathrm{~d} t \\
& \Rightarrow g(x+\pi)=\int_0^{x+\pi} \cos ^4 t \mathrm{~d} t=\int_0^x \cos ^4 t \mathrm{~d} t+\int_x^{x+\pi} \cos ^4 t \mathrm{~d} t \\
& =g(x)+\int_x^{x+\pi} \cos ^4 t \mathrm{~d} t \\
& =g(x)+\int_0^\pi \cos ^4 t \mathrm{~d} t
\end{aligned}$
[as $\cos ^4 t$ is a periodic function with period $\left.\pi\right]=g(x)+g(\pi)$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.