Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $g(x)=\frac{x}{[x]}$ for $\mathrm{x}>2$, then $\lim _{x \rightarrow 2} \frac{g(x)-g(2)}{x-2}$ is equal to
MathematicsLimitsAP EAMCETAP EAMCET 2015
Options:
  • A $-1$
  • B $0$
  • C $\frac{1}{2}$
  • D $2$
Solution:
2242 Upvotes Verified Answer
The correct answer is: $\frac{1}{2}$
Given, $g(x)=\frac{x}{[x]}$
When, $x>2$, then $[x]=2 \Rightarrow g(x)=\frac{x}{2}$
Now, $\quad \lim _{x \rightarrow 2} \frac{g(x)-g(2)}{x-2}=\lim _{x \rightarrow 2} \frac{\frac{x}{2}-1}{x-2}$ $=\lim _{x \rightarrow 2} \frac{x-2}{2(x-2)}=\lim _{x \rightarrow 2}\left(\frac{1}{2}\right)=\frac{1}{2}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.