Search any question & find its solution
Question:
Answered & Verified by Expert
If $\mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], \mathrm{J}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$, then $\mathrm{B}$ is equal to
Options:
Solution:
2280 Upvotes
Verified Answer
The correct answer is:
$\quad I \cos \theta+J \sin \theta$
$$
\begin{aligned}\quad \mathrm{B} &=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] \\
&=\left[\begin{array}{cc}
\cos \theta & 0 \\
0 & \cos \theta
\end{array}\right]+\left[\begin{array}{cc}
0 & \sin \theta \\
-\sin \theta & 0
\end{array}\right] \\
&=\cos \theta\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\sin \theta\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \\
&=\mathrm{I} \cos \theta+\mathrm{J} \sin \theta
\end{aligned}
$$
\begin{aligned}\quad \mathrm{B} &=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] \\
&=\left[\begin{array}{cc}
\cos \theta & 0 \\
0 & \cos \theta
\end{array}\right]+\left[\begin{array}{cc}
0 & \sin \theta \\
-\sin \theta & 0
\end{array}\right] \\
&=\cos \theta\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\sin \theta\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \\
&=\mathrm{I} \cos \theta+\mathrm{J} \sin \theta
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.