Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathrm{I}_1=\int_0^{\pi / 4} \sin ^2 \mathrm{x} d \mathrm{x}$ and $\mathrm{I}_2=\int_0^{\pi / 4} \cos ^2 \mathrm{x} d \mathrm{x}$, then,
MathematicsDefinite IntegrationWBJEEWBJEE 2009
Options:
  • A $\mathrm{I}_1=\mathrm{I}_2$
  • B I $_1 < \mathrm{I}_2$
  • C $\mathrm{I}_1>\mathrm{I}_2$
  • D $\mathrm{I}_2=\mathrm{I}_1+\pi / 4$
Solution:
1922 Upvotes Verified Answer
The correct answer is: I $_1 < \mathrm{I}_2$
Hints : $I_1=\int_0^{\pi / 4} \sin ^2 x d x ; I_2=\int_0^{\pi / 4} \cos ^2 x d x$
$$
\begin{aligned}
& \text { In }\left(0, \frac{\pi}{4}\right), \cos ^2 x>\sin ^2 x \therefore \int_0^{\pi / 4} \cos ^2 x d x>\int_0^{\pi / 4} \sin ^2 x d x \\
& I_2>I_1 \text { i.e. } I_1 < I_2
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.