Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}, 3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ are sides of a parallelogram, then a unit vector is parallel to one of the diagonals of the parallelogram is
MathematicsVector AlgebraAP EAMCETAP EAMCET 2004
Options:
  • A $\frac{\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{3}}$
  • B $\frac{\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{3}}$
  • C $\frac{\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}}{\sqrt{3}}$
  • D $\frac{-\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{3}}$
Solution:
2471 Upvotes Verified Answer
The correct answer is: $\frac{\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{3}}$
Let the position vector
$$
\mathbf{O A}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}, \mathbf{O B}=3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}
$$


$\therefore$ Diagonal vector
$$
\begin{aligned}
& \mathrm{r} \mathbf{O C}=\mathbf{O A}+\mathbf{A C} \\
& =\mathbf{O A}+\mathbf{O B} \quad[\because \mathbf{O B} \| \mathbf{A C}] \\
& =\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}+3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}} \\
& =4(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})
\end{aligned}
$$
$\therefore$ Unit vector of a diagonal
$$
=\frac{4(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})}{\sqrt{4^2+4^2+4^2}}=\frac{(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})}{\sqrt{3}}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.