Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $(\bar{i}+\bar{j}+\bar{k}),(\bar{i}+2 \bar{j}+3 \bar{k})$ and $(2 \bar{i}-\bar{j}+\bar{k})$ are the position vectors of the vertices A, $\mathrm{B}$ and $\mathrm{C}$ of $\triangle \mathrm{ABC}$ respectively, then the vector equation of the altitude through $\mathrm{A}$ is
MathematicsVector AlgebraAP EAMCETAP EAMCET 2018 (24 Apr Shift 2)
Options:
  • A $$
    \bar{r}=\bar{i}+\bar{j}+\bar{k}+t(\bar{i}+2 \bar{j}+3 \bar{k})
    $$
  • B $$
    \bar{r}=\bar{i}+\bar{j}+\bar{k}+t(2 \bar{i}-\bar{j}+\bar{k})
    $$
  • C $$
    \bar{r}=\bar{i}+\bar{j}+\bar{k}+t(\bar{i}-\bar{j}+2 \bar{k})
    $$
  • D $$
    \bar{r}=\bar{i}+\bar{j}+\bar{k}+t(4 \vec{i}+2 \vec{j}+4 \bar{k})
    $$
Solution:
1589 Upvotes Verified Answer
The correct answer is: $$
\bar{r}=\bar{i}+\bar{j}+\bar{k}+t(\bar{i}-\bar{j}+2 \bar{k})
$$
No solution. Refer to answer key.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.