Search any question & find its solution
Question:
Answered & Verified by Expert
If $\mathrm{I}=\lim _{\mathrm{x} \rightarrow 0} \sin \left(\frac{\mathrm{e}^{\mathrm{x}}-\mathrm{x}-1-\frac{\mathrm{x}^{2}}{2}}{\mathrm{x}^{2}}\right)$, then limit
Options:
Solution:
1919 Upvotes
Verified Answer
The correct answer is:
exists and equals 0
$I=\lim _{x \rightarrow 0} \sin \left(\frac{e^{x}-x-1-\frac{x^{2}}{2}}{x^{2}}\right)=\lim _{x \rightarrow 0} \frac{e^{x}-x-1-\frac{x^{2}}{2}}{x^{2}}=\lim _{x \rightarrow 0} \frac{e^{x}-1-0-x}{2 x}=\lim _{x \rightarrow 0} \frac{e^{x}-1}{2}=0$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.