Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $I_n=\int_0^{\frac{\pi}{4}} \tan ^n \theta d \theta$, then $I_{12}+I_{10}=$
MathematicsDefinite IntegrationMHT CETMHT CET 2023 (14 May Shift 2)
Options:
  • A $\frac {1}{8}$
  • B $\frac {1}{12}$
  • C $\frac {1}{11}$
  • D $\frac {1}{10}$
Solution:
1772 Upvotes Verified Answer
The correct answer is: $\frac {1}{11}$
$\begin{aligned} & \int_0^{\frac{\pi}{4}}\left(\tan ^{\mathrm{n}} x+\tan ^{\mathrm{n}-2} x\right) \mathrm{d} x=\frac{1}{\mathrm{n}-1} \\ & \therefore \quad \mathrm{I}_{12}+\mathrm{I}_{10}=\int_0^{\frac{\pi}{4}}\left(\tan ^{12} \theta+\tan ^{10} \theta\right) \mathrm{d} \theta \\ &=\frac{1}{12-1} \\ &=\frac{1}{11}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.