Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $I_n=\int \frac{\sin n x}{\cos x} d x$, then $I_n=$
MathematicsIndefinite IntegrationAP EAMCETAP EAMCET 2017 (26 Apr Shift 1)
Options:
  • A $\frac{-2}{n-1} \cos (n-1) x-\mathrm{I}_{n-2}$
  • B $\frac{2}{n-1} \cos (n-1) x+\mathrm{I}_{n-2}$
  • C $\frac{-2}{n+1} \sin (n+1) x-\mathrm{I}_{n-2}$
  • D $\frac{-2}{n+1} \cos (n-1) x-\mathrm{I}_{n-2}$
Solution:
2084 Upvotes Verified Answer
The correct answer is: $\frac{-2}{n-1} \cos (n-1) x-\mathrm{I}_{n-2}$


$\begin{aligned}= & \int \frac{\sin (n x-x+x)}{\cos x} d x \\ = & \int \frac{\sin [(n-1) x+x]}{\cos x} d x \\ & \int \frac{\sin (n-1) x \cos x+\cos (n-1) x \sin x}{\cos } d x\end{aligned}$
$$
\begin{aligned}
& =\int \sin (n-1) x d x+\int \frac{\cos (n-1) x \sin x}{\cos x} d x \\
& =\int \sin (n-1) x d x+\frac{1}{2} \int \frac{2 \sin x \cos (n-1) x}{\cos x} d x
\end{aligned}
$$
Since, $2 \sin x \cos y=+\sin (x+y)+\sin (x-y)$
$$
\begin{aligned}
& =-\frac{\cos (n-1) x}{(n-1)}+\frac{1}{2} \int \frac{\sin n x+\sin (2-n) x}{\cos x} d x \\
& =\frac{-\cos (n-1) x}{(n-1)} \\
& \quad+\frac{1}{2} \int \frac{\sin n x}{\cos x} d x-\frac{1}{2} \int \frac{\sin (n-2) x}{\cos x} d x
\end{aligned}
$$
From Eq. (i),
$$
\begin{aligned}
& \therefore I_n=-\frac{\cos (n-1) x}{(n-1)}+\frac{1}{2} I_n-\frac{1}{2} I_{n-2} \\
& \left(1-\frac{1}{2}\right) I_n=-\frac{\cos (n-1) x}{(n-1)}-\frac{1}{2} I_{n-2} \\
& I_n=\frac{-2}{n-1} \cos (n-1) x-I_{n-2}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.