Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $I_n=\int \cos ^n x d x$, then $6 I_6-5 I_4=$
MathematicsIndefinite IntegrationTS EAMCETTS EAMCET 2018 (05 May Shift 2)
Options:
  • A $-\cos ^5 x \sin ^2 x$
  • B $\cos ^6 x \sin ^2 x$
  • C $\cos ^3 x \sin ^2 x$
  • D $\cos ^5 x \sin x$
Solution:
2198 Upvotes Verified Answer
The correct answer is: $\cos ^5 x \sin x$
$$
\begin{aligned}
& I_n=\int \cos ^n x d x \\
& =\int \cos ^{n t-1} x \cdot \cos x d x \\
& =\cos ^{n t-1} x \cdot \sin x-\int(n-1) \cos ^{n t-2} x \\
& (-\sin x) \cdot(\sin x) d x \\
& =\cos ^{n t-1} x \sin x+\int \cos ^{n t-2} x \cdot(n-1) \sin ^2 x d x \\
& =\cos ^{n+1} x \sin x+(n-1) \int \cos ^{n t-2} x\left(1-\cos ^2 x\right) d x \\
& =\cos ^{n-1} x \sin x+(n-1) \int \cos ^{n-2} x-(n-1) \\
& \int \cos ^n x d x \\
& =\cos ^{n-1} \chi \sin \chi+(n-1) I_{n-2}-(n-1) I_n \\
& \therefore I_n(1+n-1)=\cos ^{n-1} x \sin x+(n-1) Y_{n t}-2 \\
& \Rightarrow n I_{n t}-(n-1) I_{n-2}=\cos ^{n-1} x \sin x \\
&
\end{aligned}
$$
Putting $n=6$, we get
$$
6 I_6-5 I_4=\cos ^5 x \sin x
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.