Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $I_n=\int x^n \cdot e^{c x} d x$ for $n \geq 1, \quad$ then $c \cdot I_n+n \cdot I_{n-1}$ is equal to
MathematicsIndefinite IntegrationTS EAMCETTS EAMCET 2008
Options:
  • A $x^n e^{c x}$
  • B $x^n$
  • C $e^{c x}$
  • D $x^n+e^{c x}$
Solution:
1190 Upvotes Verified Answer
The correct answer is: $x^n e^{c x}$
Given that,
$$
\begin{aligned}
& I_n=\int x^n \cdot e^{c x} d x \\
& I_n=\frac{e^{c x}}{c} \cdot x^n-\int \frac{e^{c x}}{c} \cdot n x^{n-1} d x \\
& \Rightarrow \quad I_n=\frac{e^{c x} \cdot x^n}{c}-\frac{n}{c} I_{n-1} \\
&
\end{aligned}
$$
$\Rightarrow \quad c I_n+n I_{n-1}=e^{c x} \cdot x^n$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.