Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If in a $\triangle A B C, \frac{1}{a+c}+\frac{1}{b+c}=\frac{3}{a+b+c}$, then $\angle C$ is equal to
MathematicsProperties of TrianglesTS EAMCETTS EAMCET 2013
Options:
  • A $30^{\circ}$
  • B $45^{\circ}$
  • C $60^{\circ}$
  • D $90^{\circ}$
Solution:
1594 Upvotes Verified Answer
The correct answer is: $60^{\circ}$
In $\triangle A B C$
$$
\frac{1}{a+c}+\frac{1}{b+c}=\frac{3}{a+b+c}
$$
Let $\angle C=60^{\circ}$, then
$$
\cos C=\frac{\pi}{3}
$$
$$
\begin{aligned}
& \Rightarrow a^2+b^2-c^2=a b \\
& \Rightarrow b^2+b c+a^2+a c=a b+a c+b c+c^2 \\
& \Rightarrow b(b+c)+a(a+c)=(a+c)(b+c)
\end{aligned}
$$
Divide by $(a+c)(b+c)$ and add 2 on both sides, we get
$$
\begin{aligned}
& 1+\frac{b}{a+c}+1+\frac{a}{b+c}=3 \\
\Rightarrow \quad & \frac{1}{a+c}+\frac{1}{b+c}=\frac{3}{a+b+c}
\end{aligned}
$$
So, $\angle C$ should be $60^{\circ}$.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.