Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If in a $\triangle A B C, s(s-a)=(s-b)(s-c)$, then
MathematicsProperties of TrianglesAP EAMCETAP EAMCET 2021 (23 Aug Shift 1)
Options:
  • A $\angle A=\frac{\pi}{4}$
  • B $\angle B=\frac{\pi}{3}$
  • C $\angle A=\frac{\pi}{2}$
  • D $\angle B=\frac{\pi}{2}$
Solution:
1480 Upvotes Verified Answer
The correct answer is: $\angle A=\frac{\pi}{2}$
Given, $\triangle A B C$ and
$$
\begin{aligned}
s(s-a) & =(s-b)(s-c) \\
\because \quad \sin \frac{A}{2} & =\sqrt{\frac{(s-b)(s-c)}{b c}}=\sqrt{\frac{s(s-a)}{b c}}
\end{aligned}
$$

Also, $\cos \frac{A}{2}=\sqrt{\frac{s(s-a)}{b c}} \Rightarrow \cos ^2 \frac{A}{2}=\frac{s(s-a)}{b c}$
$$
\begin{array}{ll}
\text { and } \sin ^2(A / 2)=\frac{s(s-a)}{b c} \\
\therefore & \sin ^2(A / 2)=\cos ^2 \frac{A}{2} \\
\Rightarrow & \tan ^2(A / 2)=1 \Rightarrow \tan (A / 2)=1 \\
\Rightarrow & (A / 2)=\tan ^{-1} 1=(\pi / 4) \Rightarrow A=(2 \pi / 4)=\frac{\pi}{2} \\
\therefore & \angle A=\frac{\pi}{2}
\end{array}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.