Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If in a binomial distribution $\mathrm{n}=4, \mathrm{P}(\mathrm{X}=0)=\frac{16}{81}$, then $\mathrm{P}(\mathrm{X}=4)$ equals
MathematicsProbabilityBITSATBITSAT 2015
Options:
  • A $\frac{1}{16}$
  • B $\frac{1}{81}$
  • C $\frac{1}{27}$
  • D $\frac{1}{8}$
Solution:
1038 Upvotes Verified Answer
The correct answer is: $\frac{1}{81}$
Given $n=4$ and $P(X=0)=\frac{16}{81}$

Let $\mathrm{p}$ be the probability of success and $\mathrm{q}$ that of failure in a trial.

$$

\text { Then, } \mathrm{P}(\mathrm{X}=0)={ }^{4} \mathrm{C}_{0} \mathrm{p}^{0} \mathrm{q}^{4}=\frac{16}{81}

$$

$\Rightarrow \quad \mathrm{q}^{4}=\left(\frac{2}{3}\right)^{4}$

$\left(\because{ }^{n} C_{0}=1\right)$

$\Rightarrow \quad \mathrm{q}=\frac{2}{3} \Rightarrow \mathrm{p}=\frac{1}{3}$

$\therefore \quad \mathrm{P}(\mathrm{X}=4)={ }^{4} \mathrm{C}_{4} \mathrm{p}^{4} \mathrm{q}^{0}=\mathrm{p}^{4}=\left(\frac{1}{3}\right)^{4}=\frac{1}{81}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.