Search any question & find its solution
Question:
Answered & Verified by Expert
If in a triangle $\mathrm{ABC}$, $5 \cos C+6 \cos B=4$ and $6 \cos A+4 \cos C=5$ then $\tan \frac{\mathrm{A}}{2} \tan \frac{\mathrm{B}}{2}$ is equal to
Options:
Solution:
2986 Upvotes
Verified Answer
The correct answer is:
$\frac{1}{5}$
Given : $5 \cos C+6 \cos B=4$ ...(1)
$6 \cos A+4 \cos C=5$ ...(2)
Adding eq. (1) \& (2), we have
$9 \cos C+6(\cos A+\cos B)=9$
$\Rightarrow 9 \cos \mathrm{C}+6\left[2 \cos \frac{\mathrm{A}+\mathrm{B}}{2} \cdot \cos \frac{\mathrm{A}-\mathrm{B}}{2}\right]=9$
$\Rightarrow 9 \cos \mathrm{C}-9+12 \cos \left(\frac{\pi}{2}-\frac{\mathrm{C}}{2}\right) \cdot \cos \frac{\mathrm{A}-\mathrm{B}}{2}=0$
$\Rightarrow 9(\cos \mathrm{C}-1)+12 \sin \frac{\mathrm{C}}{2} \cdot \cos \frac{\mathrm{A}-\mathrm{B}}{2}=0$
$\Rightarrow 9\left[1-2 \sin ^{2} \frac{\mathrm{C}}{2}-1\right]+12 \sin \frac{\mathrm{C}}{2} \cdot \cos \frac{\mathrm{A}-\mathrm{B}}{2}=0$
$\Rightarrow-18 \sin ^{2} \frac{\mathrm{C}}{2}+12 \sin \frac{\mathrm{C}}{2} \cdot \cos \frac{\mathrm{A}-\mathrm{B}}{2}=0$
$\Rightarrow 3 \sin \frac{\mathrm{C}}{2}=2 \cos \frac{\mathrm{A}-\mathrm{B}}{2}$
$\Rightarrow 3 \cos \frac{\mathrm{A}+\mathrm{B}}{2}=2 \cos \frac{\mathrm{A}-\mathrm{B}}{2}$
$\Rightarrow 3\left(\cos \frac{\mathrm{A}}{2} \cdot \cos \frac{\mathrm{B}}{2}-\sin \frac{\mathrm{A}}{2} \cdot \sin \frac{\mathrm{B}}{2}\right)$
$=2\left[\cos \frac{\mathrm{A}}{2} \cdot \cos \frac{\mathrm{B}}{2}+\sin \frac{\mathrm{A}}{2} \cdot \sin \frac{\mathrm{B}}{2}\right]$
$\Rightarrow 5 \sin \frac{\mathrm{A}}{2} \cdot \sin \frac{\mathrm{B}}{2}=\cos \frac{\mathrm{A}}{2} \cdot \cos \frac{\mathrm{B}}{2}$
$\Rightarrow 5 \tan \frac{\mathrm{A}}{2} \cdot \tan \frac{\mathrm{B}}{2}=1$
$\Rightarrow \tan \frac{\mathrm{A}}{2} \cdot \tan \frac{\mathrm{B}}{2}=\frac{1}{5}$
$6 \cos A+4 \cos C=5$ ...(2)
Adding eq. (1) \& (2), we have
$9 \cos C+6(\cos A+\cos B)=9$
$\Rightarrow 9 \cos \mathrm{C}+6\left[2 \cos \frac{\mathrm{A}+\mathrm{B}}{2} \cdot \cos \frac{\mathrm{A}-\mathrm{B}}{2}\right]=9$
$\Rightarrow 9 \cos \mathrm{C}-9+12 \cos \left(\frac{\pi}{2}-\frac{\mathrm{C}}{2}\right) \cdot \cos \frac{\mathrm{A}-\mathrm{B}}{2}=0$
$\Rightarrow 9(\cos \mathrm{C}-1)+12 \sin \frac{\mathrm{C}}{2} \cdot \cos \frac{\mathrm{A}-\mathrm{B}}{2}=0$
$\Rightarrow 9\left[1-2 \sin ^{2} \frac{\mathrm{C}}{2}-1\right]+12 \sin \frac{\mathrm{C}}{2} \cdot \cos \frac{\mathrm{A}-\mathrm{B}}{2}=0$
$\Rightarrow-18 \sin ^{2} \frac{\mathrm{C}}{2}+12 \sin \frac{\mathrm{C}}{2} \cdot \cos \frac{\mathrm{A}-\mathrm{B}}{2}=0$
$\Rightarrow 3 \sin \frac{\mathrm{C}}{2}=2 \cos \frac{\mathrm{A}-\mathrm{B}}{2}$
$\Rightarrow 3 \cos \frac{\mathrm{A}+\mathrm{B}}{2}=2 \cos \frac{\mathrm{A}-\mathrm{B}}{2}$
$\Rightarrow 3\left(\cos \frac{\mathrm{A}}{2} \cdot \cos \frac{\mathrm{B}}{2}-\sin \frac{\mathrm{A}}{2} \cdot \sin \frac{\mathrm{B}}{2}\right)$
$=2\left[\cos \frac{\mathrm{A}}{2} \cdot \cos \frac{\mathrm{B}}{2}+\sin \frac{\mathrm{A}}{2} \cdot \sin \frac{\mathrm{B}}{2}\right]$
$\Rightarrow 5 \sin \frac{\mathrm{A}}{2} \cdot \sin \frac{\mathrm{B}}{2}=\cos \frac{\mathrm{A}}{2} \cdot \cos \frac{\mathrm{B}}{2}$
$\Rightarrow 5 \tan \frac{\mathrm{A}}{2} \cdot \tan \frac{\mathrm{B}}{2}=1$
$\Rightarrow \tan \frac{\mathrm{A}}{2} \cdot \tan \frac{\mathrm{B}}{2}=\frac{1}{5}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.