Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If in $\triangle \mathrm{ABC}$, with usual notations, the angles are in A.P., then $\frac{a}{c} \sin 2 C+\frac{c}{a} \sin 2 A=$
MathematicsProperties of TrianglesMHT CETMHT CET 2021 (22 Sep Shift 1)
Options:
  • A $\frac{1}{2}$
  • B $\sqrt{3}$
  • C $2 \sqrt{3}$
  • D $\frac{\sqrt{3}}{2}$
Solution:
1663 Upvotes Verified Answer
The correct answer is: $\sqrt{3}$
Angles $A, B, C$ of $\triangle A B C$ are in A.P.
$$
\begin{aligned}
& \therefore \angle B=60^{\circ} \angle \mathrm{A}=+\angle \mathrm{C}=120^{\circ} \\
& \text { Also } \frac{\mathrm{a}}{\sin \mathrm{A}}=\frac{\mathrm{b}}{\sin \mathrm{B}}=\frac{\mathrm{c}}{\sin \mathrm{C}} \\
& \therefore \mathrm{a}=\mathrm{k} \sin \mathrm{A} \& \mathrm{c}=\mathrm{k} \sin \mathrm{C} \\
& \frac{\mathrm{a}}{\mathrm{c}} \sin 2 \mathrm{C}+\frac{\mathrm{c}}{\mathrm{a}} \sin 2 \mathrm{~A} \\
& =\frac{\mathrm{k} \sin \mathrm{A}}{\mathrm{k} \sin \mathrm{C}}(2 \sin \mathrm{C} \cos \mathrm{C})+\frac{\mathrm{k} \sin \mathrm{C}}{\mathrm{k} \sin \mathrm{A}}(2 \sin \mathrm{A} \cos \mathrm{A}) \\
& =2 \sin \mathrm{A} \cos \mathrm{C}+2 \cos \mathrm{A} \sin \mathrm{C}=2(\sin \mathrm{A} \cos \mathrm{C}+\cos \mathrm{A} \sin \mathrm{C}) \\
& =2 \sin (\mathrm{A}+\mathrm{C})=2 \sin \left(120^{\circ}\right)=2\left(\frac{\sqrt{3}}{2}\right)=\sqrt{3}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.