Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If \( I_{n}=\int_{0}^{\frac{\pi}{2}} x^{n} \sin x d x \), where \( n>1 \), then
MathematicsDefinite IntegrationJEE Main
Options:
  • A \( I_{n}+n(n-1) I_{n-2}=n\left(\frac{\pi}{2}\right)^{n} \)
  • B \( I_{n}+n(n-1) I_{n-2}=n\left(\frac{\pi}{2}\right)^{n-1} \)
  • C \( I_{n}-n(n-1) I_{n-2}=n\left(\frac{\pi}{2}\right)^{n} \)
  • D \( I_{n}-n(n-1) I_{n-2}=-n\left(\frac{\pi}{2}\right)^{n} \)
Solution:
1430 Upvotes Verified Answer
The correct answer is: \( I_{n}+n(n-1) I_{n-2}=n\left(\frac{\pi}{2}\right)^{n-1} \)

We have,

In=0π2xnsinxdx

In=-xncosx0π2+0π2nxn-1cosxdx

In=n0π2xn-1cosxdx

In=nxn-1sinx0π2-0π2n-1xn-2sinxdx

In=nπ2n-1-n-1In-2

Hence,

In+nn-1In-2=nπ2n-1

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.