Search any question & find its solution
Question:
Answered & Verified by Expert
If \(\int \frac{1+\cos (4 x)}{\cot (x)-\tan (x)} d x=k \cos (4 x)+c\), then
Options:
Solution:
1447 Upvotes
Verified Answer
The correct answer is:
\(k=\frac{-1}{8}\)
\(\begin{aligned}
I & =\int \frac{1+\cos 4 x}{\cot x-\tan x} d x \\
& =\int \frac{2 \cos ^2(2 x)}{\frac{\cos ^2 x-\sin ^2 x}{\sin x \cdot \cos x}} d x=\int 2 \cos 2 x \sin x \cos x d x \\
& =\frac{1}{2} \int \sin 4 x d x=\frac{-1}{8} \cos (4 x)+c=k \cos (4 x)+c \quad \text{(given)}
\end{aligned}\)
So, \(k=-\frac{1}{8}\)
Hence, option (c) is correct.
I & =\int \frac{1+\cos 4 x}{\cot x-\tan x} d x \\
& =\int \frac{2 \cos ^2(2 x)}{\frac{\cos ^2 x-\sin ^2 x}{\sin x \cdot \cos x}} d x=\int 2 \cos 2 x \sin x \cos x d x \\
& =\frac{1}{2} \int \sin 4 x d x=\frac{-1}{8} \cos (4 x)+c=k \cos (4 x)+c \quad \text{(given)}
\end{aligned}\)
So, \(k=-\frac{1}{8}\)
Hence, option (c) is correct.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.