Search any question & find its solution
Question:
Answered & Verified by Expert
If \(\int \frac{\cos 4 x+1}{\cot x-\tan x} d x=k \cos 4 x+c\), then \(k\) is
Options:
Solution:
1604 Upvotes
Verified Answer
The correct answer is:
\(-\frac{1}{8}\)
\(\begin{aligned}
& \int \frac{\cos 4 x+1}{\cot x-\tan x} d x \\
& =\int \frac{2 \cos ^2 2 x}{\cos ^2 x-\sin ^2 x} \times \sin x \cos x d x \\
& =\int \frac{\cos ^2 2 x}{\cos 2 x} \sin 2 x d x=\int \sin 2 x \cos 2 x d x \\
& =\frac{1}{2} \int \sin 4 x d x=-\frac{1}{8} \cos 4 x+c
\end{aligned}\)
So, \(\quad k=-\frac{1}{8}\)
Hence, option (c) is correct.
& \int \frac{\cos 4 x+1}{\cot x-\tan x} d x \\
& =\int \frac{2 \cos ^2 2 x}{\cos ^2 x-\sin ^2 x} \times \sin x \cos x d x \\
& =\int \frac{\cos ^2 2 x}{\cos 2 x} \sin 2 x d x=\int \sin 2 x \cos 2 x d x \\
& =\frac{1}{2} \int \sin 4 x d x=-\frac{1}{8} \cos 4 x+c
\end{aligned}\)
So, \(\quad k=-\frac{1}{8}\)
Hence, option (c) is correct.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.