Search any question & find its solution
Question:
Answered & Verified by Expert
If $\omega$ is a complex cube root of unity, the $\left[\frac{51+73 \omega+87 \omega^2}{73+87 \omega+51 \omega^2}+\frac{51+73 \omega+87 \omega^2}{87+51 \omega+73 \omega^2}\right]=$
Options:
Solution:
1069 Upvotes
Verified Answer
The correct answer is:
-1
$\begin{aligned} & \left[\frac{51+73 \omega+87 \omega^2}{73+87 \omega+51 \omega^2}+\frac{51+73 \omega+87 \omega^2}{87+51 \omega+73 \omega^2}\right]^{15} \\ & =\left[\begin{array}{c}\frac{51 \omega^2+73 \omega^3+87 \omega^4}{73+87 \omega+51 \omega^2} \times \frac{1}{\omega^2} \\ \quad+\frac{51 \omega+73 \omega^2+87 \omega^3}{87+51 \omega+73 \omega^2} \times \frac{1}{\omega}\end{array}\right]^{15} \\ & =\left[\frac{73+87 \omega+51 \omega^2}{73+87 \omega+51 \omega^2} \times \frac{\omega}{\omega^3}+\frac{87+51 \omega+73 \omega^2}{87+51 \omega+73 \omega^2} \times \frac{\omega^2}{\omega^3}\right]^{15} \\ & =\left(\omega+\omega^2\right)^{15}=(-1)^{15}=-1\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.