Search any question & find its solution
Question:
Answered & Verified by Expert
If $\omega$ is an imaginary cube root of unity, then the value of $\left(1-\omega+\omega^{2}\right) \cdot\left(1-\omega^{2}+\omega^{4}\right) \cdot\left(1-\omega^{4}+\omega^{8}\right) \cdot \ldots$
(2n factors) is
Options:
(2n factors) is
Solution:
1329 Upvotes
Verified Answer
The correct answer is:
$2^{2 n}$
Given, $\quad \omega^{3}=1,1+\omega+\omega^{2}=0$
Now,
$\left(1-\omega+\omega^{2}\right) \cdot\left(1-\omega^{2}+\omega^{4}\right) \cdot\left(1-\omega^{4}+\omega^{8}\right)$.
$\left(1-\omega^{8}+\omega^{16}\right) \ldots 2 n$ factors $=\left(1-\omega+\omega^{2}\right)\left(1-\omega^{2}+\omega\right)$
$\cdot\left(1-\omega+\omega^{2}\right) \cdot\left(1-\omega^{2}+\omega\right) \ldots .2 n$ factors
[from Eq. (i)]
$=(-\omega-\omega) \cdot\left(-\omega^{2}-\omega^{2}\right) \cdot(-\omega-\omega) \cdot\left(-\omega^{2}-\omega^{2}\right)$
... $2 n$ factors [from Eq. (i)]
$=(-2 \omega) \cdot\left(-2 \omega^{2}\right) \cdot(-2 \omega) \cdot\left(-2 \omega^{2}\right) \ldots 2 n$ factors $=(-2)^{2 n}(\omega)^{n}\left(\omega^{2}\right)^{n}$ $=(-1)^{2 n}(2)^{2 n} \omega^{3 n}$ $=2^{2 n} \cdot\left(\omega^{3}\right)^{n}=2^{2 n}(1)^{n}=2^{2 n} \quad$ [from Eq. (i)]
Now,
$\left(1-\omega+\omega^{2}\right) \cdot\left(1-\omega^{2}+\omega^{4}\right) \cdot\left(1-\omega^{4}+\omega^{8}\right)$.
$\left(1-\omega^{8}+\omega^{16}\right) \ldots 2 n$ factors $=\left(1-\omega+\omega^{2}\right)\left(1-\omega^{2}+\omega\right)$
$\cdot\left(1-\omega+\omega^{2}\right) \cdot\left(1-\omega^{2}+\omega\right) \ldots .2 n$ factors
[from Eq. (i)]
$=(-\omega-\omega) \cdot\left(-\omega^{2}-\omega^{2}\right) \cdot(-\omega-\omega) \cdot\left(-\omega^{2}-\omega^{2}\right)$
... $2 n$ factors [from Eq. (i)]
$=(-2 \omega) \cdot\left(-2 \omega^{2}\right) \cdot(-2 \omega) \cdot\left(-2 \omega^{2}\right) \ldots 2 n$ factors $=(-2)^{2 n}(\omega)^{n}\left(\omega^{2}\right)^{n}$ $=(-1)^{2 n}(2)^{2 n} \omega^{3 n}$ $=2^{2 n} \cdot\left(\omega^{3}\right)^{n}=2^{2 n}(1)^{n}=2^{2 n} \quad$ [from Eq. (i)]
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.