Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\theta$ is in the interval $\left(0, \frac{\pi}{2}\right)$ satisfying the equation $\cos 2 \theta \cdot \sec ^4 \theta+\sec ^2 \theta=0$, then $\sin ^2 \theta=$
MathematicsTrigonometric EquationsAP EAMCETAP EAMCET 2018 (23 Apr Shift 2)
Options:
  • A $\frac{1}{3}$
  • B $\frac{3}{4}$
  • C $\frac{1}{2}$
  • D $\frac{2}{3}$
Solution:
2920 Upvotes Verified Answer
The correct answer is: $\frac{2}{3}$
$\begin{array}{lrl}\text {Given, } \cos 2 \theta \cdot \sec ^4 \theta+\sec ^2 \theta=0, \theta \in(0, \pi / 2) \\ \Rightarrow & \left(1-\tan ^2 \theta\right) \sec ^2 \theta+\sec ^2 \theta=0 \\ \Rightarrow & \sec ^2 \theta\left[1-\tan ^2 \theta+1\right]=0 \\ \Rightarrow & \tan ^2 \theta=2 \\ \Rightarrow & \sin ^2 \theta=2 / 3\end{array}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.