Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\vec{\beta}$ is perpendicular to both $\vec{\alpha}$ and $\vec{\gamma}$ where $\vec{\alpha}=\overrightarrow{\mathrm{k}}$ and
$\vec{\gamma}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$, then what is $\vec{\beta}$ equal to?
MathematicsVector AlgebraNDANDA 2013 (Phase 1)
Options:
  • A $\quad 3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}$
  • B $-3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}$
  • C $2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}$
  • D $-2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}$
Solution:
2444 Upvotes Verified Answer
The correct answer is: $-3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}$
Let $\vec{\beta}=a \hat{i}+b \hat{j}+c \hat{k}$
since $\vec{\beta} \cdot \vec{\alpha}=0$ and $\vec{\beta} \cdot \vec{\gamma}=0$
$\therefore \quad c=0$ and $2 a+3 b=0 \Rightarrow a=-\frac{3 b}{2}$
Hence, $\vec{\beta}=-\frac{3 b}{2} \hat{i}+b \hat{j}=0 \Rightarrow-3 \hat{i}+2 \hat{j}=0$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.