Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\theta$ is the acute angle between the diagonals of a cube, then which one of the following is correct?
MathematicsThree Dimensional GeometryNDANDA 2013 (Phase 2)
Options:
  • A $\quad \theta=30^{\circ}$
  • B $\quad \theta=45^{\circ}$
  • C $2 \cos \theta=1$
  • D $3 \cos \theta=1$
Solution:
1789 Upvotes Verified Answer
The correct answer is: $3 \cos \theta=1$


diagonals are OP and AD and Acute anngle $=\theta$
$\cos \theta=\left|\frac{\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}}{\sqrt{\mathrm{a}_{1}^{2}+\mathrm{b}_{1}^{2}+\mathrm{c}_{1}^{2}} \sqrt{\mathrm{a}_{2}^{2}+\mathrm{b}_{2}^{2}+\mathrm{c}_{2}^{2}}}\right|$
$=\left|\frac{\mathrm{a}(-\mathrm{a})+(\mathrm{a})(\mathrm{a})+(\mathrm{a})(\mathrm{a})}{\sqrt{\mathrm{a}^{2}+\mathrm{a}^{2}+\mathrm{a}^{2}} \sqrt{\mathrm{a}^{2}+\mathrm{a}^{2}+\mathrm{a}^{2}}}\right|$
$=\left|\frac{-\mathrm{a}^{2}+\mathrm{a}^{2}+\mathrm{a}^{2}}{\sqrt{3 \mathrm{a}^{2}} \sqrt{3 \mathrm{a}^{2}}}\right|=\left|\frac{\mathrm{a}^{2}}{3 \mathrm{a}^{2}}\right|=\frac{1}{3}$
$\Rightarrow 3 \cos \theta=1$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.