Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\omega$ is the complex cube root of unity, then the value of $\omega+\omega^{\left(\frac{1}{2}+\frac{3}{8}+\frac{9}{32}+\frac{27}{128}+\ldots\right)}$ is
MathematicsSequences and SeriesBITSATBITSAT 2015
Options:
  • A -1
  • B 1
  • C $-\mathrm{i}$
  • D i
Solution:
2082 Upvotes Verified Answer
The correct answer is: -1
Consider $\frac{1}{2}+\frac{3}{8}+\frac{9}{32}+\frac{27}{128}+\ldots .$

Which can be written as

$$

\frac{3^{0}}{2^{1}}+\frac{3^{1}}{2^{3}}+\frac{3^{2}}{2^{5}}+\frac{3^{3}}{2^{7}}+\ldots .

$$ $=\frac{1}{2}\left[1+\frac{3}{2^{2}}+\frac{3^{2}}{2^{4}}+\frac{3^{3}}{2^{6}}+\ldots .\right]$

Since $\left(1+\frac{3}{2^{2}}+\frac{3^{2}}{2^{4}}+_{--}-\right)$ is a G.P.

therfore by sum of infinite G.P, we have

$$

=\frac{1}{2}\left[\frac{1}{1-\frac{3}{2^{2}}}\right]=\frac{1}{2}\left[\frac{1}{1-\frac{3}{4}}\right]=2

$$

$\therefore \quad$ Given expression

$$

\begin{array}{l}

=-1 \\

{\left[\because 1+\omega+\omega^{2}=0\right]}

\end{array}

$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.