Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $K_1$ and $K_2$ are maximum kinetic energies of photoelectrons emitted when lights of wavelengths $\lambda_1$ and $\lambda_2$ respectively incident on a metallic surface. If $\lambda_1=3 \lambda_2$, then
PhysicsDual Nature of MatterAIIMSAIIMS 2010
Options:
  • A $K_1>\left(K_2 / 3\right)$
  • B $K_1 < \left(K_2 / 3\right)$
  • C $K_1=2 K_2$
  • D $K_2=2 K_1$
Solution:
1407 Upvotes Verified Answer
The correct answer is: $K_1 < \left(K_2 / 3\right)$
$K_1=\frac{h c}{\lambda_1}-\phi_0 \ldots$..(i)

$$
\begin{aligned}
& \text { and } \begin{aligned}
K_2=\frac{h c}{\lambda_2}-\phi_0 \text { or } \frac{h c}{\lambda_2}=\left(K_2+\phi_0\right) \\
\begin{aligned}
\therefore \quad K_1-K_2 & =h c\left[\frac{1}{\lambda_1}-\frac{1}{\lambda_2}\right] \\
& =h c\left[\frac{1}{3 \lambda_2}-\frac{1}{\lambda_2}\right]=\frac{2 h c}{3 \lambda_2} \\
& =-\frac{2}{3}\left(K_2+\phi_0\right)
\end{aligned} \\
\text { or } K_1=K_2-\frac{2}{3} K_2-\frac{2}{3} \phi_0=\frac{K_2}{3}-\frac{2}{3} \phi_0 \\
\text { or } K_1 < \frac{K_2}{3}
\end{aligned}
\end{aligned}
$$
From (ii)

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.