Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $k=\frac{a+b}{a b}$ is a non-zero constant then the point which lies on the straight line $\frac{x}{a}+\frac{y}{b}=1$ is
MathematicsStraight LinesTS EAMCETTS EAMCET 2023 (14 May Shift 2)
Options:
  • A $(k, k)$
  • B $\left(k, \frac{1}{k}\right)$
  • C $\left(\frac{1}{k}, k\right)$
  • D $\left(\frac{1}{k}, \frac{1}{k}\right)$
Solution:
1440 Upvotes Verified Answer
The correct answer is: $\left(\frac{1}{k}, \frac{1}{k}\right)$
$k=\frac{a+b}{a b}=\frac{1}{a}+\frac{1}{b}$
at $(k, k): \frac{k}{a}+\frac{k}{b}=k\left(\frac{1}{a}+\frac{1}{b}\right)=k^2 \neq 1$
at $\left(\frac{1}{k}, \frac{1}{k}\right): \frac{1}{k a}+\frac{1}{k b}=\frac{1}{k}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{1}{k} \cdot k=1$
$\therefore \quad$ Required point is $\left(\frac{1}{k}, \frac{1}{k}\right)$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.