Search any question & find its solution
Question:
Answered & Verified by Expert
If $\mathrm{k}_{\mathrm{i}}$ are possible values of $\mathrm{k}$ for which lines $\mathrm{k} x+2 y+2=0,2 x+\mathrm{k} y+3=0$ and $3 x+3 y+\mathrm{k}=0$ are concurrent, then $\sum \mathrm{k}_{\mathrm{i}}$ has the value
Options:
Solution:
2739 Upvotes
Verified Answer
The correct answer is:
$0$
If three lines $\mathrm{a}_1 x+\mathrm{b}_1 y+\mathrm{c}_1=0$, $\mathrm{a}_2+\mathrm{b}_2 y+\mathrm{c}_2=0$ and $\mathrm{a}_3 x+\mathrm{b}_3 y+\mathrm{c}_3=0$ are
$$
\begin{aligned}
& \text { concurrent, then }\left|\begin{array}{lll}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{array}\right|=0 \\
& \Rightarrow\left|\begin{array}{lll}
k & 2 & 2 \\
2 & k & 3 \\
3 & 3 & k
\end{array}\right|=0 \\
& \Rightarrow k^2\left(k^2-9\right)-2(2 k-9)+2(6-3 k)=0 \\
& \Rightarrow k^3-9 k-4 k+18+12-6 k=0 \\
& \Rightarrow k^3-19 k+30=0 \\
& \Rightarrow(k-2)\left(k^2 42 k-15\right)=0 \\
& \Rightarrow(k-2)(k+5)(k-3)=0 \\
& \Rightarrow k_1=2, k_2=-5 \text { and } k_3=3 \\
& \Rightarrow \sum k_i=0
\end{aligned}
$$
$$
\begin{aligned}
& \text { concurrent, then }\left|\begin{array}{lll}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{array}\right|=0 \\
& \Rightarrow\left|\begin{array}{lll}
k & 2 & 2 \\
2 & k & 3 \\
3 & 3 & k
\end{array}\right|=0 \\
& \Rightarrow k^2\left(k^2-9\right)-2(2 k-9)+2(6-3 k)=0 \\
& \Rightarrow k^3-9 k-4 k+18+12-6 k=0 \\
& \Rightarrow k^3-19 k+30=0 \\
& \Rightarrow(k-2)\left(k^2 42 k-15\right)=0 \\
& \Rightarrow(k-2)(k+5)(k-3)=0 \\
& \Rightarrow k_1=2, k_2=-5 \text { and } k_3=3 \\
& \Rightarrow \sum k_i=0
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.