Search any question & find its solution
Question:
Answered & Verified by Expert
If $\mathrm{l}_1, \mathrm{~m}_1, \mathrm{n}_1$ and $\mathrm{l}_2, \mathrm{~m}_2, \mathrm{n}_2$ are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are $m_1 n_2-m_2 n_1, n_1 l_2-n_2 l_1, l_1 m_2-l_2 m_1$
Solution:
2370 Upvotes
Verified Answer
$\mathrm{l}_1, \mathrm{~m}_1, \mathrm{n}_1$ and $\mathrm{l}_2, \mathrm{~m}_2, \mathrm{n}_2$ are the direction cosines to two mutually perpendicualr lines then
$$
l_1 l_2+m_1 m_2+n_1 n_2=0
$$
Also $l_1^2+m_1^2+n_1^2=1$ and $1_2^2+m_2^2+n_2^2=1$...(ii)
Let $\mathrm{l}, \mathrm{m}, \mathrm{n}$ be the direction costnes of the line perpendicualr to the lines with direction cosines $\mathrm{l}_1, \mathrm{~m}_1, \mathrm{n}_1$, and $\mathrm{l}_2, \mathrm{~m}_2, \mathrm{n}_2$ $\Rightarrow \mathrm{ll}_1+\mathrm{mm}_1+\mathrm{nn}_1=0$ and $\quad \mathrm{ll}_2+\mathrm{mm}_2+\mathrm{nn}_2=0$ $\therefore \frac{\mathrm{l}}{\mathrm{m}_1 \mathrm{n}_2-\mathrm{m}_2 \mathrm{n}_1}=\frac{\mathrm{m}}{\mathrm{n}_1 \mathrm{l}_2-\mathrm{n}_2 \mathrm{l}_1}=\frac{\mathrm{n}}{\mathrm{l}_1 \mathrm{~m}_2-\mathrm{l}_2 \mathrm{~m}_1}$
suppose $\mathrm{m}_1 \mathrm{n}_2-\mathrm{m}_2 \mathrm{n}_1=\mathrm{P}, \mathrm{n}_1 \mathrm{l}_2-\mathrm{n}_2 \mathrm{l}_1=\mathrm{q}, \mathrm{l}_1 \mathrm{~m}_2-\mathrm{l}_2 \mathrm{~m}_1=\mathrm{r}$
$$
\therefore \frac{1}{\mathrm{P}}=\frac{\mathrm{m}}{\mathrm{q}}=\frac{\mathrm{n}}{\mathrm{r}}=\frac{\sqrt{1^2+\mathrm{m}^2+\mathrm{n}^2}}{\sqrt{\mathrm{P}^2+\mathrm{q}^2+\mathrm{r}^2}}=\frac{1}{\sqrt{\mathrm{P}^2+\mathrm{q}^2+\mathrm{r}^2}}
$$
Now consider the identity
$$
\begin{aligned}
&\left(\mathrm{l}_1^2+\mathrm{m}_1^2+\mathrm{n}_1^2\right)\left(\mathrm{l}_2^2+\mathrm{m}_2^2+\mathrm{n}_2^2\right)-\left(\mathrm{l}_1 \mathrm{l}_2+\mathrm{m}_1 \mathrm{~m}_2+\mathrm{n}_1 \mathrm{n}_2\right)^2 \\
&\left(\mathrm{~m}_1 \mathrm{n}_2-\mathrm{m}_2 \mathrm{n}_1\right)^2+\left(\mathrm{n}_1 \mathrm{l}_2-\mathrm{n}_2 \mathrm{l}_1\right)^2+\left(\mathrm{l}_1 \mathrm{~m}_2-\mathrm{l}_2 \mathrm{~m}_1\right)^2 \\
&\text { R.H.S. }=\mathrm{p}^2+\mathrm{q}^2+\mathrm{r}^2 \\
&=\left(\mathrm{l}_1^2+\mathrm{m}_1^2+\mathrm{n}_1^2\right)\left(\mathrm{l}_2^2+\mathrm{m}_2^2+\mathrm{n}_2^2\right) \\
&\qquad \quad-\left(\mathrm{l}_1 \mathrm{l}_2+\mathrm{m}_1 \mathrm{~m}_2+\mathrm{n}_1 \mathrm{n}_2\right)^2 \ldots \text { (iii) }
\end{aligned}
$$
From (i) \& (ii)
$\mathrm{l}_1 \mathrm{l}_2+\mathrm{m}_1 \mathrm{~m}_2+\mathrm{n}_1 \mathrm{n}_2=0$ and $\mathrm{l}_1^2+\mathrm{m}_1^2+\mathrm{n}_1^2=1$
and $\mathrm{l}_2^2+\mathrm{m}_2^2+\mathrm{n}_2^2=1$
Putting these values in (iii)
$\mathrm{p}^2+\mathrm{q}^2+\mathrm{r}^2=1 \cdot 1-0=1$ $\therefore \quad \sqrt{\mathrm{P}^2+\mathrm{q}^2+\mathrm{r}^2}=1$ $\frac{1}{\mathrm{p}}=\frac{\mathrm{m}}{\mathrm{q}}=\frac{\mathrm{n}}{\mathrm{r}}=\frac{1}{\sqrt{\mathrm{p}^2+\mathrm{q}^2+\mathrm{r}^2}}=\frac{1}{1}=1$ $\mathrm{l}=\mathrm{p}=\mathrm{m}_1 \mathrm{n}_2-\mathrm{m}_2 \mathrm{n}_1, \mathrm{~m}=\mathrm{q}=\mathrm{n}_1 \mathrm{l}_2-\mathrm{n}_2 \mathrm{l}_1$ and $\mathrm{r}=\mathrm{l}_1 \mathrm{~m}_2-\mathrm{l}_2 \mathrm{~m}_1$
Hence, the direction cosines required are $\mathrm{m}_1 \mathrm{n}_2-\mathrm{m}_2 \mathrm{n}_1, \mathrm{n}_1 \mathrm{l}_2-\mathrm{n}_2 \mathrm{l}_1, \mathrm{l}_1 \mathrm{~m}_2-\mathrm{l}_2 \mathrm{~m}_1$.
$$
l_1 l_2+m_1 m_2+n_1 n_2=0
$$
Also $l_1^2+m_1^2+n_1^2=1$ and $1_2^2+m_2^2+n_2^2=1$...(ii)
Let $\mathrm{l}, \mathrm{m}, \mathrm{n}$ be the direction costnes of the line perpendicualr to the lines with direction cosines $\mathrm{l}_1, \mathrm{~m}_1, \mathrm{n}_1$, and $\mathrm{l}_2, \mathrm{~m}_2, \mathrm{n}_2$ $\Rightarrow \mathrm{ll}_1+\mathrm{mm}_1+\mathrm{nn}_1=0$ and $\quad \mathrm{ll}_2+\mathrm{mm}_2+\mathrm{nn}_2=0$ $\therefore \frac{\mathrm{l}}{\mathrm{m}_1 \mathrm{n}_2-\mathrm{m}_2 \mathrm{n}_1}=\frac{\mathrm{m}}{\mathrm{n}_1 \mathrm{l}_2-\mathrm{n}_2 \mathrm{l}_1}=\frac{\mathrm{n}}{\mathrm{l}_1 \mathrm{~m}_2-\mathrm{l}_2 \mathrm{~m}_1}$
suppose $\mathrm{m}_1 \mathrm{n}_2-\mathrm{m}_2 \mathrm{n}_1=\mathrm{P}, \mathrm{n}_1 \mathrm{l}_2-\mathrm{n}_2 \mathrm{l}_1=\mathrm{q}, \mathrm{l}_1 \mathrm{~m}_2-\mathrm{l}_2 \mathrm{~m}_1=\mathrm{r}$
$$
\therefore \frac{1}{\mathrm{P}}=\frac{\mathrm{m}}{\mathrm{q}}=\frac{\mathrm{n}}{\mathrm{r}}=\frac{\sqrt{1^2+\mathrm{m}^2+\mathrm{n}^2}}{\sqrt{\mathrm{P}^2+\mathrm{q}^2+\mathrm{r}^2}}=\frac{1}{\sqrt{\mathrm{P}^2+\mathrm{q}^2+\mathrm{r}^2}}
$$
Now consider the identity
$$
\begin{aligned}
&\left(\mathrm{l}_1^2+\mathrm{m}_1^2+\mathrm{n}_1^2\right)\left(\mathrm{l}_2^2+\mathrm{m}_2^2+\mathrm{n}_2^2\right)-\left(\mathrm{l}_1 \mathrm{l}_2+\mathrm{m}_1 \mathrm{~m}_2+\mathrm{n}_1 \mathrm{n}_2\right)^2 \\
&\left(\mathrm{~m}_1 \mathrm{n}_2-\mathrm{m}_2 \mathrm{n}_1\right)^2+\left(\mathrm{n}_1 \mathrm{l}_2-\mathrm{n}_2 \mathrm{l}_1\right)^2+\left(\mathrm{l}_1 \mathrm{~m}_2-\mathrm{l}_2 \mathrm{~m}_1\right)^2 \\
&\text { R.H.S. }=\mathrm{p}^2+\mathrm{q}^2+\mathrm{r}^2 \\
&=\left(\mathrm{l}_1^2+\mathrm{m}_1^2+\mathrm{n}_1^2\right)\left(\mathrm{l}_2^2+\mathrm{m}_2^2+\mathrm{n}_2^2\right) \\
&\qquad \quad-\left(\mathrm{l}_1 \mathrm{l}_2+\mathrm{m}_1 \mathrm{~m}_2+\mathrm{n}_1 \mathrm{n}_2\right)^2 \ldots \text { (iii) }
\end{aligned}
$$
From (i) \& (ii)
$\mathrm{l}_1 \mathrm{l}_2+\mathrm{m}_1 \mathrm{~m}_2+\mathrm{n}_1 \mathrm{n}_2=0$ and $\mathrm{l}_1^2+\mathrm{m}_1^2+\mathrm{n}_1^2=1$
and $\mathrm{l}_2^2+\mathrm{m}_2^2+\mathrm{n}_2^2=1$
Putting these values in (iii)
$\mathrm{p}^2+\mathrm{q}^2+\mathrm{r}^2=1 \cdot 1-0=1$ $\therefore \quad \sqrt{\mathrm{P}^2+\mathrm{q}^2+\mathrm{r}^2}=1$ $\frac{1}{\mathrm{p}}=\frac{\mathrm{m}}{\mathrm{q}}=\frac{\mathrm{n}}{\mathrm{r}}=\frac{1}{\sqrt{\mathrm{p}^2+\mathrm{q}^2+\mathrm{r}^2}}=\frac{1}{1}=1$ $\mathrm{l}=\mathrm{p}=\mathrm{m}_1 \mathrm{n}_2-\mathrm{m}_2 \mathrm{n}_1, \mathrm{~m}=\mathrm{q}=\mathrm{n}_1 \mathrm{l}_2-\mathrm{n}_2 \mathrm{l}_1$ and $\mathrm{r}=\mathrm{l}_1 \mathrm{~m}_2-\mathrm{l}_2 \mathrm{~m}_1$
Hence, the direction cosines required are $\mathrm{m}_1 \mathrm{n}_2-\mathrm{m}_2 \mathrm{n}_1, \mathrm{n}_1 \mathrm{l}_2-\mathrm{n}_2 \mathrm{l}_1, \mathrm{l}_1 \mathrm{~m}_2-\mathrm{l}_2 \mathrm{~m}_1$.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.