Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\lim _{x \rightarrow 0} \frac{\left(1+a^3\right)+8 e^{1 / x}}{1+\left(1-b^3\right) e^{1 / x}}=2$, then
MathematicsLimitsCOMEDKCOMEDK 2022
Options:
  • A $a=1, b=2$
  • B $a=1, b=-3^{1 / 3}$
  • C $a=2, b=3^{1 / 3}$
  • D None of these
Solution:
1203 Upvotes Verified Answer
The correct answer is: $a=1, b=-3^{1 / 3}$
Divide and multiply by $e^{1 / x}$, then
$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\left(1+a^3\right) e^{-1 / x}+8}{e^{-1 / x}+\left(1-b^3\right)}=2 \\
\Rightarrow \quad & \frac{0+8}{0+1-b^3}=2 \Rightarrow 1-b^3=4 \Rightarrow b^3=-3 \\
\Rightarrow \quad & b=-3^{1 / 3}
\end{aligned}
$$
Then, $a \in R$.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.