Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\lim _{x \rightarrow 1} \frac{\sqrt[4]{x^{-3}}+a \sqrt[4]{x^5}}{x-1}=-2$, then the coefficient of $x$ in the expansion of $\left(\sqrt[4]{x^{-3}}+a \sqrt[4]{x^5}\right)^4$ is
MathematicsLimitsAP EAMCETAP EAMCET 2023 (17 May Shift 1)
Options:
  • A $6$
  • B $-1$
  • C $5$
  • D $4$
Solution:
1794 Upvotes Verified Answer
The correct answer is: $6$
$\begin{aligned}
& \text {} \lim _{x \rightarrow 1} \frac{\sqrt[4]{x^{-3}}+a \sqrt[4]{x^5}}{x-1}=-2 \\
& \Rightarrow \lim _{x \rightarrow 1} \frac{\sqrt[4]{x^{-3}}\left(1+a x^2\right)}{x-1}=-2
\end{aligned}$
This is possible if and if $a=1$
$\begin{aligned}
& \left(\sqrt[4]{x^{-3}}+a \sqrt[4]{x^5}\right)^4=\left(\sqrt[4]{x^{-3}}+\sqrt[4]{x^5}\right)^4 \\
& ={ }^4 C_0\left(\sqrt[4]{x^{-3}}\right)^0\left(\sqrt[4]{x^5}\right)^4+{ }^4 C_1\left(\sqrt[4]{x^{-3}}\right)^1\left(\sqrt[4]{x^5}\right)^3 \\
& +{ }^4 C_2\left(\sqrt[4]{x^{-3}}\right)^2\left(\sqrt[4]{x^5}\right)^2+{ }^4 C_3\left(\sqrt[4]{x^{-3}}\right)^3\left(\sqrt[4]{x^5}\right) \\
& +{ }^4 C\left(\sqrt[4]{x^{-3}}\right)^4\left(\sqrt[4]{x^5}\right)^0 \\
& \therefore \text { The coefficient of } x={ }^4 C_2=\frac{4 !}{2 ! 2 !}=\frac{4 \times 3}{2 \times 1}=6
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.